Pages

Pembangkit Listrik Tenaga Angin

 
          Energi merupakan bagian penting dalam kehidupan masyarakat karena hampir semua aktivitas manusia selalu membutuhkan energi. Misalnya untuk penerangan, proses industri atau untuk menggerakkan peralatan rumah tangga diperlukan energi listrik, untuk menggerakkan kendaraan baik roda dua maupun empat diperlukan bensin, serta masih banyak peralatan di sekitar kehidupan manusia yang memerlukan energi. 
Sebagian besar energi yang digunakan di Indonesia berasal dari energi fosil yang berbentuk minyak bumi dan gas bumi. Ketergantungan terhadap bahan bakar fosil setidaknya memiliki tiga ancaman serius, yakni:
  1. Menipisnya cadangan minyak bumi.
  2. Kenaikan / ketidakstabilan harga akibat laju permintaan yang lebih besar dari produksi minyak.
  3. Polusi gas rumah kaca (terutama CO2) akibat pembakaran bahan bakar fosil.
          Kadar CO2 saat ini disebut sebagai yang tertinggi selama 125 tahun belakangan, efek buruk CO2 terhadap pemanasan global telah disepakati hampir oleh semua kalangan. Hal ini menimbulkan ancaman serius bagi kehidupan makhluk hidup di muka bumi. Oleh karena itu, pengembangan dan implementasi bahan bakar terbarukan yang ramah lingkungan perlu mendapatkan perhatian serius dari berbagai negara. Pemerintah sebenarnya telah menyiapkan berbagai peraturan untuk mengurangi ketergantungan terhadap bahan bakar fosil (misalnya: Kebijakan Umum Bidang Energi (KUBE) tahun 1980 dan Keputusan Menteri Pertambangan dan Energi No. 996.K / 43 / MPE / 1999 tentang prioritasi penggunaan bahan bakar terbarukan untuk produksi listrik yang hendak dibeli PLN). Namun sayang sekali, pada tataran implementasi belum terlihat adanya usaha serius dan sistematik untuk menerapkan energi terbarukan guna substitusi bahan bakar fosil. (Yuli Setyo : 2005)
Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan.
Pemanfaatan energi angin sebenarnya bukan barang baru bagi umat manusia. Semenjak 2000 tahun lalu teknologi pemanfaatan sumber daya angin dan air sudah dikenal manusia dalam bentuk kincir angin (wind mills). Selain ramah lingkungan, sumber energi ini juga selalu tersedia setiap waktu dan memiliki masa depan bisnis yang menguntungkan. Kini sebagian besar negara maju di Eropa dan Amerika Serikat telah memanfaatkan sumber energi ini. Pada masa awal perkembangannya, teknologi energi angin lebih banyak dimanfaatkan sebagai sulih tenaga manusia dalam bidang pertanian dan manufaktur, maka kini dengan teknologi dan bahan yang baru, manusia membuat turbin angin untuk membangkitkan energi listrik yang bersih, baik untuk penerangan, sumber panas atau tenaga pembangkit untuk alat-alat rumah tangga. Menurut data dari American Wind Energy Association (AWEA), hingga saat ini telah ada sekitar 20.000 turbin angin diseluruh dunia yang dimanfaatkan untuk menghasilkan listrik. Kebanyakan turbin semacam itu dioperasikan di lahan khusus yang disebut “ladang angin” (wind farm).
Di negara-negara Eropa, pemanfaatan sumber energi yang dapat diperbaharui diperkirakan bakal mencapai 8% dari permintaan energi di tahun 2005. Energi angin menjadi salah satu alternatif yang banyak dipilih dan sekaligus berfungsi mengurangi emisi gas karbondioksida (CO2) yang dihasilkan oleh perangkat sumber energi sebelumnya. Tujuh tahun belakangan ini, kapasitas energi angin terpasang di Eropa melonjak hingga 40% per tahun dan saat ini kapasitas tersebut dapat memenuhi kebutuhan listrik lebih dari 5 juta kepala keluarga. Industri energi tenaga angin diperkirakan bakal memiliki kapasitas 40.000 MW (mega Watt) yang dapat mencukupi kebutuhan listrik untuk 50 juta kepala keluarga pada tahun 2010. Energi angin adalah energi yang relatif bersih dan ramah lingkungan karena tidak menghasilkan karbon dioksida (CO2) atau gas-gas lain yang berperan dalam pemanasan global, sulphur dioksida dan nitrogen oksida (jenis gas yang menyebabkan hujan asam). Energi ini pun tidak menghasilkan limbah yang berbahaya bagi lingkungan ataupun manusia. Meski demikian, harap diingat bahwa sekecil apapun semua bentuk produksi energi selalu memiliki akibat bagi lingkungan. Hanya saja efek turbin angin sangat rendah, bersifat lokal dan mudah dikelola. Di samping itu turbin atau kincir angin memiliki pesona tersendiri dan menjadi atraksi wisata yang menarik, seperti misalnya saja kincir-kincir angin di negeri Belanda. (Nanang Okta : 2006).
Secara sederhana sketsa kincir angin adalah sebagai berikut : Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.

Syarat - syarat dan kondisi angin yang dapat digunakan untuk menghasilkan energi listrik dapat dilihat pada tabel berikut Angin kelas 3 adalah batas minimum dan angin kelas 8 adalah batas maksimum energi angin yang dapat dimanfaatkan untuk menghasilkan energi listrik.
Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin. Diharapkan pada tahun 2010 total kapasitas pembangkit listrik tenaga angin secara glogal mencapai 170 GigaWatt.
Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun. Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) ditargetkan mencapai 250 megawatt (MW) pada tahun 2025.
Dalam Majalah PII Engineer Monthly edisi Agustus 2008, antara lain dibahas alasan perlunya dibangun PLTN di Indonesia, selain daripada itu dibahas selintas mengenai Tenaga Listrik Tenaga Angin (PTLTA). Makalah ini membahas secara singkat mekanisme peralatan Tenaga Listrik Tenaga Angin (PTLTA), berukuran kecil yang mungkin dapat dikembangkan di daerah-daerah pedesaan atau pulau-pulau terpencil di Indonesia yang mempunyai potensi angin yang cukup (cukup kencang dan bertiup sepanjang tahun).
Tenaga angin telah lama dimanfaatkan di tanah air kita sejak ratusan mungkin ribuan tahun yang lalu, khususnya untuk menggerakkan kapal layar sampai sekarang, dan yang banyak kita lihat sekarang digunakan dalam tambak-tambak ikan di tepi pantai untuk menggerakkan baling-baling (atau turbin angin) untuk menjalankan memompaan air. Namun baiklah kalau kita di Indonesia mulai mempopulerkan PTLTA, khususnya ukuran kecil. PTLTA ukuran kecil adalah istilah yang biasanya diberikan kepada unit 50 KW atau lebih kecil. Tempat-tempat terpencil yang biasanya menggunakan diesel-generator dapat menggantikannya atau menambahkannya dengan PTLTA ukuran kecil ini. Salah satu contoh PTLTA ukuran kecil terlihat di gambar #1 sbb:
Gambar #1
Komponen PTLTA Komponen-komponen PTLTA dari ukuran besar, pada umumnya dapat terlihat dalam gambar #2, sbb; sedangkan untuk ukuran kecil biasanya tidak semua komponen ada seperti yang terklihat dalam gambar #2
Anemometer: Mengukur kecepatan angin, dan mengirim data angin ini ke Alat Pengontrol.
Blades (Bilah Kipas): Kebanyakan turbin angin mempunyai 2 atau 3 bilah kipas. Angin yang menghembus menyebabkan turbin tersebut berputar.
Gambar#2
Brake (Rem): Suatu rem cakram yang dapat digerakkan secara mekanis, dengan tenaga listrik atau hidrolik untuk menghentikan rotor atau saat keadaan darurat.
Controller (Alat Pengontrol): Alat Pengontrol ini menstart turbin pada kecepatan angin kira-kira 12-25 km/jam, dan mematikannya pada kecepatan 90 km/jam. Turbin tidak beroperasi di atas 90 km/jam, karena angina terlalu kencang dapat merusakkannya.
Gear box (Roda Gigi): Roda gigi menaikkan putaran dari 30-60 rpm menjadi kira-kira 1000-1800 rpm yaitu putaran yang biasanya disyaratkan untuk memutar generator listrik.
Generator: Generator pembangkit listrik, biasanya sekarang alternator arus bolak-balik.
High-speed shaft (Poros Putaran Tinggi): Menggerakkan generator.
Low-speed shaft (Poros Puutaran Rendah): Poros turbin yang berputar kira-kira 30-60 rpm.
Nacelle (Rumah Mesin): Rumah mesin ini terletak di atas menara . Di dalamnya berisi gear-box, poros putaran tinggi / rendah, generator, alat pengontrol, dan alat pengereman.
Pitch (Sudut Bilah Kipas): Bilah kipas bisa diatur sudutnya untuk mengatur kecepatan rotor yang dikehendaki, tergantung angin terlalu rendah atau terlalu kencang.
Rotor: Bilah kipas bersama porosnya dinamakan rotor.
Tower (Menera): Menara bisa dibuat dari pipa baja, beton, rangka besi. Karena kencangnya angin bertambah dengan ketinggian, maka makin tinggi menara makin besar tenaga yang didapat.
Wind direction (Arah Angin): Gambar #2 adalah turbin yang menghadap angin, desain turbin lain ada yang mendapat hembusan angin dari belakang.
Wind vane (Tebeng Angin): Mengukur arah angin, berhubungan dengan penggerak arah yang memutar arah turbin disesuaikan dengan arah angin.
Yaw drive (Penggerak Arah): Penggerak arah memutar turbin ke arah angin untuk desain turbin yang menghadap angina. Untuk desain turbin yang mendapat hembusan angina dari belakang tak memerlukan alat ini.
Yaw motor (Motor Penggerak Arah): Motor listrik yang menggerakkan penggerak arah.
Data kekuatan angin Untuk keperluan perencanaan pemasangan PTLTA skala besar atau menengah, sebaiknya data kekuatan angin di suatu daerah perlu diperoleh, agar dapat mendesain ukuran PTLTA yang tepat dan ekonomis. Salah satu contoh data yang diambil di suatu tempat (Lee Ranch, Colorado) di Amerika Serikat pada tahun 2002 adalah sebagai berikut:
Demikianlah secara sangat singkat tulisan mengenai Pembangkit Listrik Tenaga Angin. Tulisan ini dimaksudkan hanya untuk menggugah gagasan para pembaca untuk dapat mengembangkan pembuatan PTLTA skala kecil di Indonesia, baik dengan cara membuat sendiri atau mungkin membeli dari beberapa pembuat turbin angin yang ada di dunia, untuk dipasang di daerah-daerah, di mana potensi angin memang mencukupi.
Tenaga Angin pada tahun 2020
Selama beberapa tahun terakhir pemasangan kapasitas angin meningkat melebihi 30%. Hal tersebut membuat target untuk menjadikan tenaga angin mampu memenuhi kebutuhan energi dunia hingga 12 persen pada tahun 2020 menjadi realistis. Di saat bersamaan hal tersebut juga akan membuka kesempatan terbukanya lapangan pekerjaan hingga dua juta dan mengurangi emisi CO2 hingga 10.700 juta ton.
Berkah terus meningkatnya ukuran dan kapasitas rata-rata turbin, pada tahun 2020 biaya pembangkit listrik tenaga angin pada wilayah yang menunjang akan turun hingga 2.45 sen per KWh- lebih murah 36 persen dari biaya pada tahun 2003 yang mencapai 3.79 euro/KWh. Sambungan kabel listrik tidak termasuk dalam biaya ini.

Tenaga angin setelah tahun 2020
Sumber angin dunia sangat besar dan menyebar dengan baik di semua kawasan dan negara. Menggunakan teknologi saat ini, tenaga angin diperkirakan dapat menyediakan 53.000 Terawat/jam setiap tahunnya. Yang berarti dua kali lebih besar dari proyeksi permintaan energi pada tahun 2020-meninggalkan tempat yang penting untuk tumbuhnya industri bahkan dalam 1 dekade kedepan. Amerika Serikat sendiri mempunyai potensi angin yang cukup untuk menyediakan pasokan kebutuhan energinya bahkan tiga kali lebih besar daripada kebutuhannya.
Variable Angin
Variable angin menimbulkan masalah manajemen sistem jaringan listrik lebih sedikit daripada yang diharapkan oleh pihak-pihak yang skeptis. Ketidakstabilan permintaan energi dan kebutuhan untuk melindungi gagalnya pembangkit listrik konvensional memenuhi kebutuhan tersebut, sesungguhnya membutuhkan sistem jaringan listrik yang lebih fleksibel daripada tenaga angin, dan pengalaman dunia nyata telah menunjukan bahwa sistem pembangkit listrik nasional mampu menjalankan tugas tersebut. Pada malam berangin, sebagai contoh, turbin angin 50% pembangkit listrik di bagian barat Denmark, tapi kekuatannya telah terbukti dapat diatur.
Penciptaan jaringan listrik yang super mengurangi masalah ketidakstabilan angin. Caranya dengan membiarkan perubahan pada kecepatan di wilayah-wilayah berbeda untuk diseimbangkan satu sama lain.

Bergerak ke depan
Perkembangan tenaga angin berkembang dengan pesat saat ini, namun demikian masa depan tenaga ini belum terjamin. Saat ini tenaga angin telah dimanfaatkan oleh sekitar 50 negara di dunia. Namun sejauh ini kemajuan itu disebabkan oleh usaha segelintir pihak, yang dipimpin oleh Jerman, Spanyol dan Denmark. Negara-negara lain perlu untuk memperbaiki industri tenaga angin secara dramastis jika target global ingin dicapai. Oleh karena itu prediksi untuk menjadikan tenaga angin dapat memasok energi dunia sebesar 12 persen pada tahun 2020 sebaiknya tidak dilihat sebagai hal yang pasti, tapi sebagai tujuan—satu kemungkinan masa depan yang kita bisa pilih jika kita mau.
Dampak lingkungan Pembangkit listrik tenaga angin
(Firman Sasongko, 1 Maret 2009)
Keuntungan utama dari penggunaan pembangkit listrik tenaga angin secara prinsipnya adalah disebabkan karena sifatnya yang terbarukan. Hal ini berarti eksploitasi sumber energi ini tidak akan membuat sumber daya angin yang berkurang seperti halnya penggunaan bahan bakar fosil. Oleh karenanya tenaga angin dapat berkontribusi dalam ketahanan energi dunia di masa depan. Tenaga angin juga merupakan sumber energi yang ramah lingkungan, dimana penggunaannya tidak mengakibatkan emisi gas buang atau polusi yang berarti ke lingkungan.
Penetapan sumber daya angin dan persetujuan untuk pengadaan ladang angin merupakan proses yang paling lama untuk pengembangan proyek energi angin. Hal ini dapat memakan waktu hingga 4 tahun dalam kasus ladang angin yang besar yang membutuhkan studi dampak lingkungan yang luas.
Emisi karbon ke lingkungan dalam sumber listrik tenaga angin diperoleh dari proses manufaktur komponen serta proses pengerjaannya di tempat yang akan didirikan pembangkit listrik tenaga angin. Namun dalam operasinya membangkitkan listrik, secara praktis pembangkit listrik tenaga angin ini tidak menghasilkan emisi yang berarti. Jika dibandingkan dengan pembangkit listrik dengan batubara, emisi karbon dioksida pembangkit listrik tenaga angin ini hanya seperseratusnya saja. Disamping karbon dioksida, pembangkit listrik tenaga angin menghasilkan sulfur dioksida, nitrogen oksida, polutan atmosfir yang lebih sedikit jika dibandingkan dengan pembangkit listrik dengan menggunakan batubara ataupun gas. Namun begitu, pembangkit listrik tenaga angin ini tidak sepenuhnya ramah lingkungan, terdapat beberapa masalah yang terjadi akibat penggunaan sumber energi angin sebagai pembangkit listrik, diantaranya adalah dampak visual , derau suara, beberapa masalah ekologi, dan keindahan.
Dampak visual biasanya merupakan hal yang paling serius dikritik. Penggunaan ladang angin sebagai pembangkit listrik membutuhkan luas lahan yang tidak sedikit dan tidak mungkin untuk disembunyikan. Penempatan ladang angin pada lahan yang masih dapat digunakan untuk keperluan yang lain dapat menjadi persoalan tersendiri bagi penduduk setempat. Selain mengganggu pandangan akibat pemasangan barisan pembangkit angin, penggunaan lahan untuk pembangkit angin dapat mengurangi lahan pertanian serta pemukiman. Hal ini yang membuat pembangkitan tenaga angin di daratan menjadi terbatas. Beberapa aturan mengenai tinggi bangunan juga telah membuat pembangunan pembangkit listrik tenaga angin dapat terhambat. Penggunaan tiang yang tinggi untuk turbin angin juga dapat menyebabkan terganggunya cahaya matahari yang masuk ke rumah-rumah penduduk. Perputaran sudu-sudu menyebabkan cahaya matahari yang berkelap-kelip dan dapat mengganggu pandangan penduduk setempat.
Efek lain akibat penggunaan turbin angin adalah terjadinya derau frekuensi rendah. Putaran dari sudu-sudu turbin angin dengan frekuensi konstan lebih mengganggu daripada suara angin pada ranting pohon. Selain derau dari sudu-sudu turbin, penggunaan gearbox serta generator dapat menyebabkan derau suara mekanis dan juga derau suara listrik. Derau mekanik yang terjadi disebabkan oleh operasi mekanis elemen-elemen yang berada dalam nacelle atau rumah pembangkit listrik tenaga angin. Dalam keadaan tertentu turbin angin dapat juga menyebabkan interferensi elektromagnetik, mengganggu penerimaan sinyal televisi atau transmisi gelombang mikro untuk perkomunikasian.
Penentuan ketinggian dari turbin angin dilakukan dengan menganalisa data turbulensi angin dan kekuatan angin. Derau aerodinamis merupakan fungsi dari banyak faktor seperti desain sudu, kecepatan perputaran, kecepatan angin, turbulensi aliran masuk. Derau aerodinamis merupakan masalah lingkungan, oleh karena itu kecepatan perputaran rotor perlu dibatasi di bawah 70m/s. Beberapa ilmuwan berpendapat bahwa penggunaan skala besar dari pembangkit listrik tenaga angin dapat merubah iklim lokal maupun global karena menggunakan energi kinetik angin dan mengubah turbulensi udara pada daerah atmosfir.

0 komentar:

Posting Komentar